项目名称: 近Kenmotsu流形的曲率与Ricci孤立子
项目编号: No.11526080
项目类型: 专项基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 王雅宁
作者单位: 河南师范大学
项目金额: 3万元
中文摘要: 本项目拟运用微分流形上的张量分析法和活动标价法并结合李代数中的相关理论与结果,研究近Kenmotsu流形的曲率与Ricci孤立子。一方面,完全刻画近Kenmotsu流形在局部对称和共形对称条件下的曲率与局部分类,寻找存在近Kenmotsu结构的3维李群并研究其局部结构和分类定理。另一方面,首次在近Kenmotsu流形上讨论近梯度Ricci孤立子的存在性及其分类问题,以及复几何中著名的Goldberg-猜想在近Kenmotsu流形上的对偶问题。项目预期研究结果将深刻揭示近切触度量结构与孤立子存在性之间的关系以及近切触度量流形许多内在的几何与拓扑性质。
中文关键词: 近切触流形;Ricci 张量;曲率;Yamabe 孤立子;Ricci 孤立子
英文摘要: In this project, by using tensorial analysis and moving frame methods together with some related theories and results of Lie algebra, we mainly investigate the curvature and Ricci solitons of almost Kenmotsu manifolds. We completely characterize the curvature and local classification of almost Kenmotsu manifolds under the conditions of local symmetry and conformal symmetry respectively. We aim to search some Lie groups of dimension 3 on which there exist almost Kenmotsu structures and study their local structure and classification problems. On the other hand, we discuss the existences and classifications of almost gradient Ricci solitons on almost Kenmotsu manifolds. We first consider the analogy of the well-known Goldberg's conjecture of complex geometry in the framework of almost Kenmotsu manifolds. The expected many results shall reveal deeply the relations between almost contact metric structure and the Ricci soliton, and certain interior geometric and topological properties of these manifolds.
英文关键词: Almost contact manifold;Ricci tensor;Curvature;Yamabe Soliton;Ricci Soliton