人工智能技术在医学影像领域的应用是医学研究的热点之一。然而,这一领域最近的成功主要依赖于大量仔细注释的数据,而对医学图像进行注释是一个昂贵的过程。在本文中,我们提出了一种新的方法,称为FocalMix,据我们所知,这是第一个利用半监督学习(SSL)的最新进展来进行3D医学图像检测的方法。我们对两个广泛应用的肺结节检测数据集LUNA16和NLST进行了广泛的实验。结果表明,与最先进的监督学习方法相比,我们提出的SSL方法可以通过400个未标记的CT扫描实现高达17.3%的实质性改进。

成为VIP会员查看完整内容
0
48

相关内容

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers. CVPR 2020 will take place at The Washington State Convention Center in Seattle, WA, from June 16 to June 20, 2020. http://cvpr2020.thecvf.com/

小样本学习(FSL)近年来引起了越来越多的关注,但仍然具有挑战性,因为学习从少数例子中归纳的固有困难。本文提出了一种自适应间隔原则,以提高基于度量的元学习方法在小样本学习问题中的泛化能力。具体地说,我们首先开发了一个与类相关的加性边缘损失算法,该算法考虑了每对类之间的语义相似性,从而将特征嵌入空间中的样本从相似的类中分离出来。此外,我们在抽样训练任务中加入所有类别之间的语义上下文,并开发了与任务相关的附加间隔损失,以更好地区分不同类别的样本。我们的自适应间隔方法可以很容易地推广到更现实的广义FSL设置。大量的实验表明,在标准FSL和通用FSL设置下,所提出的方法可以提高现有基于度量的元学习方法的性能。

成为VIP会员查看完整内容
0
64

领域适应(DA)提供了重用数据和模型用于新问题领域的有价值的方法。然而,对于具有不同数据可用性的时间序列数据,还没有考虑到健壮的技术。在本文中,我们做出了三个主要贡献来填补这一空白。我们提出了一种新的时间序列数据卷积深度域自适应模型(CoDATS),该模型在现实传感器数据基准上显著提高了最先进的DA策略的准确性和训练时间。通过利用来自多个源域的数据,我们增加了CoDATS的有用性,从而进一步提高了与以前的单源方法相比的准确性,特别是在域之间具有高度可变性的复杂时间序列数据集上。其次,我们提出了一种新的弱监督域自适应(DA-WS)方法,利用目标域标签分布形式的弱监督,这可能比其他数据标签更容易收集。第三,我们对不同的真实数据集进行了综合实验,以评估我们的域适应和弱监督方法的有效性。结果表明,用于单源DA的CoDATS比最先进的方法有了显著的改进,并且我们使用来自多个源域和弱监督信号的数据实现了额外的准确性改进。

成为VIP会员查看完整内容
0
18

摘要: 目标检测算法应用广泛,一直是计算机视觉领域备受关注的研究热点。近年来,随着深度学习的发展,3D图像的目标检测研究取得了巨大的突破。与2D目标检测相比,3D目标检测结合了深度信息,能够提供目标的位置、方向和大小等空间场景信息,在自动驾驶和机器人领域发展迅速。文中首先对基于深度学习的2D目标检测算法进行概述;其次根据图像、激光雷达、多传感器等不同数据采集方式,分析目前具有代表性和开创性的3D目标检测算法;结合自动驾驶的应用场景,对比分析不同 3D 目标检测算法的性能、优势和局限性;最后总结了3D目标检测的应用意义以及待解决的问题,并对 3D 目标检测的发展方向和新的挑战进行了讨论和展望。

成为VIP会员查看完整内容
0
98

基于学习的图匹配方法已经发展和探索了十多年,最近在范围和受欢迎程度方面迅速增长。然而,以往的基于学习的算法,无论有没有深度学习策略,都主要关注节点和/或边缘亲和力生成的学习,而对组合求解器的学习关注较少。在这篇论文中,我们提出了一个完全可训练的图匹配框架,在这个框架中,亲和的学习和组合优化的求解不像以前的许多技术那样被明确地分开。首先将两个输入图之间的节点对应问题转化为从一个构造的赋值图中选择可靠节点的问题。然后,利用图网络块模块对图进行计算,形成每个节点的结构化表示。最后对每个节点预测一个用于节点分类的标签,并在正则化的排列差异和一对一匹配约束下进行训练。该方法在四个公共基准上进行了评估,并与最先进的算法进行了比较,实验结果表明了该方法的良好性能。

成为VIP会员查看完整内容
0
24

随着机器学习、图形处理技术和医学成像数据的迅速发展,机器学习模型在医学领域的使用也迅速增加。基于卷积神经网络(CNN)架构的快速发展加剧了这一问题,医学成像社区采用这种架构来帮助临床医生进行疾病诊断。自2012年AlexNet取得巨大成功以来,CNNs越来越多地被用于医学图像分析,以提高临床医生的工作效率。近年来,三维(3D) CNNs已被用于医学图像分析。在这篇文章中,我们追溯了3D CNN的发展历史,从它的机器学习的根源,简单的数学描述3D CNN和医学图像在输入到3D CNNs之前的预处理步骤。我们回顾了在不同医学领域,如分类、分割、检测和定位,使用三维CNNs(及其变体)进行三维医学成像分析的重要研究。最后,我们讨论了在医学成像领域使用3D CNNs的挑战(以及使用深度学习模型)和该领域可能的未来趋势。

成为VIP会员查看完整内容
0
43

题目: Self-Supervised Viewpoint Learning From Image Collections

简介:

训练深度神经网络以估计对象的视点需要标记大型训练数据集。但是,手动标记视点非常困难,容易出错且耗时。另一方面,从互联网(例如汽车或人脸)上挖掘许多未分类的物体类别图像相对容易。我们试图回答这样的研究问题:是否可以仅通过自我监督将这种未标记的野外图像集合成功地用于训练一般对象类别的视点估计网络。这里的自我监督是指网络具有的唯一真正的监督信号是输入图像本身。我们提出了一种新颖的学习框架,该框架结合了“综合分析”范式,利用生成网络以视点感知的方式重构图像,并具有对称性和对抗性约束,以成功地监督我们的视点估计网络。我们表明,对于人脸,汽车,公共汽车和火车等几个对象类别,我们的方法在完全监督方法上具有竞争性。我们的工作为自我监督的观点学习开辟了进一步的研究,并为其提供了坚实的基础。

成为VIP会员查看完整内容
0
20

主题: Learning Video Object Segmentation from Unlabeled Videos

摘要:

我们提出了一种新的视频对象分割方法(VOS),解决了从未标记的视频中学习对象模式的问题,而现有的方法大多依赖于大量的带注释的数据。我们引入了一个统一的无监督/弱监督学习框架,称为MuG,它全面地捕捉了VOS在多个粒度上的内在特性。我们的方法可以帮助提高对VOS中可视模式的理解,并显著减少注释负担。经过精心设计的体系结构和强大的表示学习能力,我们的学习模型可以应用于各种VOS设置,包括对象级零镜头VOS、实例级零镜头VOS和单镜头VOS。实验表明,在这些设置下,有良好的性能,以及利用无标记数据进一步提高分割精度的潜力。

成为VIP会员查看完整内容
0
28

半监督学习介于传统监督学习和无监督学习之间,是一种新型机器学习方法,其思想是在标记样本数量很少的情况下,通过在模型训练中引入无标记样本来 避免传统监督学习在训练样本不足(学习不充分)时出现性能(或模型)退化的问 题。上海交通大学屠恩美和杨杰老师撰写了一篇关于《半监督学习理论及其研究进展概述》论文,详细阐述了最新回顾了半监督学习的发展历程和主要理 论,并介绍了半监督学习研究的最新进展,最后结合应用实例分析了半监督学习在 解决实际问题中的重要作用。

成为VIP会员查看完整内容
A Review of Semi Supervised Learning Theories and Recent Advances.pdf
0
46
小贴士
相关论文
Ling Yang,Liangliang Li,Zilun Zhang, Zhou,Erjin Zhou,Yu Liu
11+阅读 · 2020年3月31日
FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
Dong Wang,Yuan Zhang,Kexin Zhang,Liwei Wang
9+阅读 · 2020年3月20日
Ting Chen,Simon Kornblith,Mohammad Norouzi,Geoffrey Hinton
20+阅读 · 2020年2月13日
Zilong Zhong,Jonathan Li,David A. Clausi,Alexander Wong
3+阅读 · 2019年5月12日
Sparse2Dense: From direct sparse odometry to dense 3D reconstruction
Jiexiong Tang,John Folkesson,Patric Jensfelt
9+阅读 · 2019年3月21日
3D Hand Shape and Pose Estimation from a Single RGB Image
Liuhao Ge,Zhou Ren,Yuncheng Li,Zehao Xue,Yingying Wang,Jianfei Cai,Junsong Yuan
15+阅读 · 2019年3月3日
Yanbin Liu,Juho Lee,Minseop Park,Saehoon Kim,Eunho Yang,Sungju Hwang,Yi Yang
20+阅读 · 2018年12月25日
Paul Henderson,Vittorio Ferrari
3+阅读 · 2018年11月15日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
9+阅读 · 2018年7月8日
Ali Diba,Mohsen Fayyaz,Vivek Sharma,Amir Hossein Karami,Mohammad Mahdi Arzani,Rahman Yousefzadeh,Luc Van Gool
8+阅读 · 2017年11月22日
Top