虽然生成对抗网络在图像合成任务中取得了巨大的成功,但众所周知,它们很难适应不同的数据集,部分原因是训练过程中的不稳定性和对超参数的敏感性。这种不稳定性的一个普遍接受的原因是,当真实和虚假分布的支持没有足够的重叠时,从鉴别器到发生器的梯度变得不具信息性。本文提出了多尺度梯度生成对抗网络(MSG-GAN),这是一种简单而有效的技术,通过允许梯度流从鉴别器到发生器在多个尺度上流动来解决这个问题。该技术为高分辨率图像合成提供了一种稳定的方法,并作为常用的渐进生长技术的替代。结果表明,MSG-GAN在不同大小、分辨率和域的多种图像数据集上,以及不同类型的丢失函数和结构上都稳定收敛,且具有相同的固定超参数集。与最先进的GAN相比,在我们尝试的大多数情况下,我们的方法都能与之媲美或超越其性能。