Current state-of-the-art convolutional architectures for object detection are manually designed. Here we aim to learn a better architecture of feature pyramid network for object detection. We adopt Neural Architecture Search and discover a new feature pyramid architecture in a novel scalable search space covering all cross-scale connections. The discovered architecture, named NAS-FPN, consists of a combination of top-down and bottom-up connections to fuse features across scales. NAS-FPN, combined with various backbone models in the RetinaNet framework, achieves better accuracy and latency tradeoff compared to state-of-the-art object detection models. NAS-FPN improves mobile detection accuracy by 2 AP compared to state-of-the-art SSDLite with MobileNetV2 model in [32] and achieves 48.3 AP which surpasses Mask R-CNN [10] detection accuracy with less computation time.
翻译:用于探测物体的当前最先进的连锁结构是人工设计的。 我们在这里的目标是学习一个更好的用于探测物体的地貌金字塔网络结构。 我们采用神经结构搜索,并在覆盖所有跨规模连接的新型可缩放搜索空间中发现一个新的地貌金字塔结构。 所发现的建筑名为NAS-FPN, 由自上而下和自下而上连接的结合组成, 与不同规模的引信特征连接组成。 NAS- FPN, 与RetinaNet框架中的各种主干模型相结合, 与最先进的物体探测模型相比, 实现了更高的准确性和长期平衡。 NAS- FPN 将移动探测精确度提高2个AP, 与最先进的SDLite 相比, 在 [32] 使用移动网络2 模型, 实现了48.3 AP, 超过Mask R-CN [10] 检测准确度, 计算时间更少。