In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.
翻译:过去十年来,革命神经网络(CNNs)在各种人工智能任务中表现出了最先进的表现,为加快CNN的实验和开发,发布了几个软件框架,主要针对强饥饿CPU和GPU;在这方面,以FPGAs为形式的可重新配置硬件构成了一个潜在的替代平台,可以纳入现有的深层学习生态系统,以便在性能、电能消耗和可编程之间实现金枪鱼的平衡;本文介绍了对CNN现有CNN-FPGA工具流的调查,其中包括对其关键特征的比较研究,其中包括所支持的应用、建筑选择、设计空间探索方法和取得的业绩;此外,还查明并介绍了CNN算法研究最新趋势带来的重大挑战和目标;最后,提出了统一评价方法,目的是全面、完整和深入地评价CNN-FPGA工具流。