The main challenge for domain generalization (DG) is to overcome the potential distributional shift between multiple training domains and unseen test domains. One popular class of DG algorithms aims to learn representations that have an invariant causal relation across the training domains. However, certain features, called \emph{pseudo-invariant features}, may be invariant in the training domain but not the test domain and can substantially decreases the performance of existing algorithms. To address this issue, we propose a novel algorithm, called Invariant Information Bottleneck (IIB), that learns a minimally sufficient representation that is invariant across training and testing domains. By minimizing the mutual information between the representation and inputs, IIB alleviates its reliance on pseudo-invariant features, which is desirable for DG. To verify the effectiveness of the IIB principle, we conduct extensive experiments on large-scale DG benchmarks. The results show that IIB outperforms invariant learning baseline (e.g. IRM) by an average of 2.8\% and 3.8\% accuracy over two evaluation metrics.
翻译:域通用(DG)的主要挑战是克服多个培训领域和无形测试领域之间潜在的分布变化。一个流行的DG算法类别旨在学习在培训领域之间具有不同因果关系的表达方式。然而,某些特征(称为 emph{psedo-invariant explications})在培训领域可能是无差别的,但不是测试领域,并且可以大幅度降低现有算法的性能。为了解决这个问题,我们提议了一个叫作Invariant Information Bolttleneck(IIB)的新算法,该算法在培训和测试领域之间学习了最低限度的充分表达方式。通过最大限度地减少代表性与投入之间的相互信息,IIB减轻了对伪变量特性的依赖,这对DG是可取的。为了核实IIB原则的有效性,我们进行了大规模DG基准的广泛实验。结果显示,IIB比两个评价指标的平均2.8 ⁇ 和3.8 ⁇ /3.8的准确度超过了变量学习基线(例如IRM)。