Existing Unsupervised Domain Adaptation (UDA) literature adopts the covariate shift and conditional shift assumptions, which essentially encourage models to learn common features across domains. However, due to the lack of supervision in the target domain, they suffer from the semantic loss: the feature will inevitably lose non-discriminative semantics in source domain, which is however discriminative in target domain. We use a causal view -- transportability theory -- to identify that such loss is in fact a confounding effect, which can only be removed by causal intervention. However, the theoretical solution provided by transportability is far from practical for UDA, because it requires the stratification and representation of the unobserved confounder that is the cause of the domain gap. To this end, we propose a practical solution: Transporting Causal Mechanisms (TCM), to identify the confounder stratum and representations by using the domain-invariant disentangled causal mechanisms, which are discovered in an unsupervised fashion. Our TCM is both theoretically and empirically grounded. Extensive experiments show that TCM achieves state-of-the-art performance on three challenging UDA benchmarks: ImageCLEF-DA, Office-Home, and VisDA-2017. Codes are available in Appendix.


翻译:现有未经监督的域适应(UDA)文献采用了共同变换和有条件的变换假设,这些假设基本上鼓励模型学习不同领域的共同特征,然而,由于目标领域缺乏监督,这些模型遭受了语义损失:该特征在源领域不可避免地会失去非差异性语义,而源领域却具有歧视性。我们使用一种因果观点 -- -- 运输可变性理论 -- -- 来确定这种损失事实上是一种混乱效应,只能通过因果干预予以消除。然而,运输提供的理论解决方案对于UDA来说远不实用,因为它要求未观测到的共创者进行分级和代表,而这正是域间差距的根源。为此,我们提出了一个切实可行的解决方案:运输Causal机制(TCM),通过使用域变量分解因果性因果机制,确定交错的因果关系,而这种机制是非由不可控制的。我们的TCM具有理论和经验依据。

5
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
36+阅读 · 2021年7月7日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员