We present PPF-FoldNet for unsupervised learning of 3D local descriptors on pure point cloud geometry. Based on the folding-based auto-encoding of well known point pair features, PPF-FoldNet offers many desirable properties: it necessitates neither supervision, nor a sensitive local reference frame, benefits from point-set sparsity, is end-to-end, fast, and can extract powerful rotation invariant descriptors. Thanks to a novel feature visualization, its evolution can be monitored to provide interpretable insights. Our extensive experiments demonstrate that despite having six degree-of-freedom invariance and lack of training labels, our network achieves state of the art results in standard benchmark datasets and outperforms its competitors when rotations and varying point densities are present. PPF-FoldNet achieves $9\%$ higher recall on standard benchmarks, $23\%$ higher recall when rotations are introduced into the same datasets and finally, a margin of $>35\%$ is attained when point density is significantly decreased.
翻译:我们提出PPF-FoldNet, 用于在纯点云度几何学上不受监督地学习 3D 本地描述器。 PPF-FoldNet 在以折叠为基础自动编码已知点对称功能的基础上,提供了许多可取的属性:它既不需要监督,也不需要敏感的地方参考框架,点定偏移的好处是端对端的、快速的,并且可以提取强大的变量内描述器。由于一种新颖的特征可视化,它的演变可以监测为提供可解释的洞察。我们的广泛实验表明,尽管有六度的自由失常和缺乏培训标签,但我们的网络在标准基准数据集中取得了艺术成果,并在出现旋转和不同点密度时超越了竞争者。 PPFF-Fold Net在标准基准上达到9 $以上记分数, 当将旋转结果引入同一数据集时, 23 美元以上记起,最后, 当点密度显著降低时, 35. 美元 差值。