Annotation burden has become one of the biggest barriers to semantic segmentation. Approaches based on click-level annotations have therefore attracted increasing attention due to their superior trade-off between supervision and annotation cost. In this paper, we propose seminar learning, a new learning paradigm for semantic segmentation with click-level supervision. The fundamental rationale of seminar learning is to leverage the knowledge from different networks to compensate for insufficient information provided in click-level annotations. Mimicking a seminar, our seminar learning involves a teacher-student and a student-student module, where a student can learn from both skillful teachers and other students. The teacher-student module uses a teacher network based on the exponential moving average to guide the training of the student network. In the student-student module, heterogeneous pseudo-labels are proposed to bridge the transfer of knowledge among students to enhance each other's performance. Experimental results demonstrate the effectiveness of seminar learning, which achieves the new state-of-the-art performance of 72.51% (mIOU), surpassing previous methods by a large margin of up to 16.88% on the Pascal VOC 2012 dataset.
翻译:解说负担已成为语义分解的最大障碍之一。 因此,基于点击级别注释的方法因其在监管和批注成本之间的高度平衡而引起越来越多的关注。 在本文中,我们建议研讨会学习,这是使用点击级别的监管进行语义分解的新学习模式。 研讨会学习的基本理由是利用不同网络的知识来弥补在点击级别注释中提供的信息不足。 模拟研讨会,我们的研讨会学习涉及教师-学生和学生-学生模块,学生既可以学习熟练的教师,也可以学习其他学生。 师生模块使用基于指数移动平均数的教师网络指导学生网络的培训。 在学生-学生模块中,建议使用混杂的假标签来连接学生之间的知识转让,以提高彼此的绩效。实验结果表明研讨会学习的有效性,这实现了72.51%的新型水平(mIOU),在2012年帕斯卡VOCset数据上比以往方法高出了16.88%的很大空间。