Graph contrastive learning has become a powerful technique for several graph mining tasks. It learns discriminative representation from different perspectives of augmented graphs. Ubiquitous in our daily life, singed-directed graphs are the most complex and tricky to analyze among various graph types. That is why singed-directed graph contrastive learning has not been studied much yet, while there are many contrastive studies for unsigned and undirected. Thus, this paper proposes a novel signed-directed graph contrastive learning, SDGCL. It makes two different structurally perturbed graph views and gets node representations via magnetic Laplacian perturbation. We use a node-level contrastive loss to maximize the mutual information between the two graph views. The model is jointly learned with contrastive and supervised objectives. The graph encoder of SDGCL does not depend on social theories or predefined assumptions. Therefore it does not require finding triads or selecting neighbors to aggregate. It leverages only the edge signs and directions via magnetic Laplacian. To the best of our knowledge, it is the first to introduce magnetic Laplacian perturbation and signed spectral graph contrastive learning. The superiority of the proposed model is demonstrated through exhaustive experiments on four real-world datasets. SDGCL shows better performance than other state-of-the-art on four evaluation metrics.
翻译:对比图形学习已成为若干图形采矿任务的有力技术。 它从不同角度从扩大图形的不同角度学习有区别的表达方式。 在我们日常生活中, 单向图形是最复杂、 最难分析各种图形类型。 正因为如此, 单向图形对比学习尚未研究过很多, 而对于未签名和未定向的对比学习则有许多对比性研究。 因此, 本文建议了一个新颖的、 签名的图形对比性学习, SDGCL 。 它通过磁性 Laplacian 渗透, 产生两种不同的结构周遭图形观点, 并且通过磁性 Laplacian 渗透得到节点的表达方式。 我们使用无偏偏偏的对比性损失来尽量扩大两种图形观点之间的相互信息。 该模型与对比性和监督性的目标共同学习。 SDGCL 的图形编码并不取决于社会理论或预先定义的假设。 因此, 它不需要通过磁性拉普尔基亚 来利用边缘的图形和方向。 我们最了解的是, 我们首先在磁性 Laplacecian 上引入磁性变色级的磁性对比模型, 4 演示性模型展示了其他的模型, 演示性模型的演示演示演示演示演示演示演示演示演示演示演示演示的演示的演示的演示的演示的演示的演示。 。