Graph contrastive learning has become a powerful technique for several graph mining tasks. It learns discriminative representation from different perspectives of augmented graphs. Ubiquitous in our daily life, singed-directed graphs are the most complex and tricky to analyze among various graph types. That is why singed-directed graph contrastive learning has not been studied much yet, while there are many contrastive studies for unsigned and undirected. Thus, this paper proposes a novel signed-directed graph contrastive learning, SDGCL. It makes two different structurally perturbed graph views and gets node representations via magnetic Laplacian perturbation. We use a node-level contrastive loss to maximize the mutual information between the two graph views. The model is jointly learned with contrastive and supervised objectives. The graph encoder of SDGCL does not depend on social theories or predefined assumptions. Therefore it does not require finding triads or selecting neighbors to aggregate. It leverages only the edge signs and directions via magnetic Laplacian. To the best of our knowledge, it is the first to introduce magnetic Laplacian perturbation and signed spectral graph contrastive learning. The superiority of the proposed model is demonstrated through exhaustive experiments on four real-world datasets. SDGCL shows better performance than other state-of-the-art on four evaluation metrics.


翻译:对比图形学习已成为若干图形采矿任务的有力技术。 它从不同角度从扩大图形的不同角度学习有区别的表达方式。 在我们日常生活中, 单向图形是最复杂、 最难分析各种图形类型。 正因为如此, 单向图形对比学习尚未研究过很多, 而对于未签名和未定向的对比学习则有许多对比性研究。 因此, 本文建议了一个新颖的、 签名的图形对比性学习, SDGCL 。 它通过磁性 Laplacian 渗透, 产生两种不同的结构周遭图形观点, 并且通过磁性 Laplacian 渗透得到节点的表达方式。 我们使用无偏偏偏的对比性损失来尽量扩大两种图形观点之间的相互信息。 该模型与对比性和监督性的目标共同学习。 SDGCL 的图形编码并不取决于社会理论或预先定义的假设。 因此, 它不需要通过磁性拉普尔基亚 来利用边缘的图形和方向。 我们最了解的是, 我们首先在磁性 Laplacecian 上引入磁性变色级的磁性对比模型, 4 演示性模型展示了其他的模型, 演示性模型的演示演示演示演示演示演示演示演示演示演示演示演示的演示的演示的演示的演示的演示的演示。 。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
38+阅读 · 2020年12月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2023年3月8日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
38+阅读 · 2020年12月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
20+阅读 · 2019年11月23日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员