3D object recognition has successfully become an appealing research topic in the real-world. However, most existing recognition models unreasonably assume that the categories of 3D objects cannot change over time in the real-world. This unrealistic assumption may result in significant performance degradation for them to learn new classes of 3D objects consecutively, due to the catastrophic forgetting on old learned classes. Moreover, they cannot explore which 3D geometric characteristics are essential to alleviate the catastrophic forgetting on old classes of 3D objects. To tackle the above challenges, we develop a novel Incremental 3D Object Recognition Network (i.e., InOR-Net), which could recognize new classes of 3D objects continuously via overcoming the catastrophic forgetting on old classes. Specifically, a category-guided geometric reasoning is proposed to reason local geometric structures with distinctive 3D characteristics of each class by leveraging intrinsic category information. We then propose a novel critic-induced geometric attention mechanism to distinguish which 3D geometric characteristics within each class are beneficial to overcome the catastrophic forgetting on old classes of 3D objects, while preventing the negative influence of useless 3D characteristics. In addition, a dual adaptive fairness compensations strategy is designed to overcome the forgetting brought by class imbalance, by compensating biased weights and predictions of the classifier. Comparison experiments verify the state-of-the-art performance of the proposed InOR-Net model on several public point cloud datasets.


翻译:3D 对象识别已经成功地成为现实世界中一个具有吸引力的研究课题。 然而,大多数现有识别模型都不合理地假定3D对象的类别在现实世界中不会随着时间的变化而发生改变。这种不切实际的假设可能导致它们由于老的学习对象的灾难性遗忘而连续学习3D对象的新类别。此外,它们无法探索哪些3D几何特性对于减轻3D对象旧类的灾难性遗忘至关重要。为了应对上述挑战,我们开发了一个新型的3D对象递增识别网络(即InOR-Net),它可以通过克服旧类灾难性的遗忘而不断识别3D对象的新类别。具体地说,一个分类指导的几何推理可能会通过利用内在类别信息来解释每个类别具有独特3D特性的本地几何结构。然后我们提出一个新的批评导致几何特性来区分每个类别中的3D几何特性对克服了旧3D对象的灾难性遗忘,同时防止3D特性的负面影响。此外,一个双重的适应性公平性赔偿模型,旨在通过利用分类的状态,来弥补对数级的偏重的比较,通过若干项分析结果,从而弥补了对等的比较。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员