In the generative model approach of machine learning, it is essential to acquire an accurate probabilistic model and compress the dimension of data for easy treatment. However, in the conventional deep-autoencoder based generative model such as VAE, the probability of the real space cannot be obtained correctly from that of in the latent space, because the scaling between both spaces is not controlled. This has also been an obstacle to quantifying the impact of the variation of latent variables on data. In this paper, we propose Rate-Distortion Optimization guided autoencoder, in which the Jacobi matrix from real space to latent space has orthonormality. It is proved theoretically and experimentally that (i) the probability distribution of the latent space obtained by this model is proportional to the probability distribution of the real space because Jacobian between two spaces is constant; (ii) our model behaves as non-linear PCA, where energy of acquired latent space is concentrated on several principal components and the influence of each component can be evaluated quantitatively. Furthermore, to verify the usefulness on the practical application, we evaluate its performance in unsupervised anomaly detection and it outperforms current state-of-the-art methods.


翻译:在机器学习的基因模型方法中,必须获得准确的概率模型,并压缩数据层面,以便于处理。然而,在常规的深自动coder基基因模型(如VAE)中,实际空间的概率无法从潜层空间的概率中正确获得,因为两个空间之间的缩放没有受到控制。这也阻碍了量化潜在变量变化对数据的影响。在本文中,我们提议了由实际空间到潜层空间的雅各比基矩阵具有异常性,在理论上和实验上证明:(一)该模型获得的潜在空间的概率分布与实际空间的概率分布成正比,因为雅各基在两个空间之间的比例是恒定的;(二)我们的模型表现为非线性五氯苯甲醚,获得的潜层的能量集中在几个主要组成部分,每个组成部分的影响都可以进行定量评估。此外,为了核实实际应用的有用性,我们用未校准的异常异常现象探测和外形的状态方法评估其性能。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
4+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员