In this paper, we propose Generative Adversarial Network (GAN) architectures that use Capsule Networks for image-synthesis. Based on the principal of positional-equivariance of features, Capsule Network's ability to encode spatial relationships between the features of the image helps it become a more powerful critic in comparison to Convolutional Neural Networks (CNNs) used in current architectures for image synthesis. Our proposed GAN architectures learn the data manifold much faster and therefore, synthesize visually accurate images in significantly lesser number of training samples and training epochs in comparison to GANs and its variants that use CNNs. Apart from analyzing the quantitative results corresponding the images generated by different architectures, we also explore the reasons for the lower coverage and diversity explored by the GAN architectures that use CNN critics.
翻译:在本文中,我们提出了利用Capsule网络进行图像合成的GAN(GAN)结构。根据地势均匀特征的主要原理,Capsule网络能够将图像特征之间的空间关系编码起来,从而帮助它成为一个比当前图像合成结构中使用的Culational Neal网络(CNNs)更强大的批评家。我们提议的GAN结构能够更快地了解数据方位,因此,在与GANs及其使用CNN的变异器相比,以少得多的培训样本和训练小区合成可见准确图像。除了分析与不同结构生成的图像相对应的量化结果外,我们还探讨了使用CNN批评器的GAN结构所探索的覆盖面和多样性较低的原因。