This paper addresses the problem of stylized text generation in a multilingual setup. A version of a language model based on a long short-term memory (LSTM) artificial neural network with extended phonetic and semantic embeddings is used for stylized poetry generation. The quality of the resulting poems generated by the network is estimated through bilingual evaluation understudy (BLEU), a survey and a new cross-entropy based metric that is suggested for the problems of such type. The experiments show that the proposed model consistently outperforms random sample and vanilla-LSTM baselines, humans also tend to associate machine generated texts with the target author.


翻译:本文论述多语种结构中以立体化文字生成问题,以长期短期内存(LSTM)人工神经网络为基础的语言模型的版本,以及长长的音频和语义嵌入器,用于发型化诗集,通过双语评估基础研究、一项调查以及针对这类类型的问题建议的一种基于跨元素的新的衡量标准,估计了网络所产生的诗的质量。实验表明,拟议的模型始终优于随机抽样和香草-LSTM基线,人类还倾向于将机器生成的文字与目标作者联系起来。

4
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
机器学习入门的经验与建议
专知会员服务
63+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
208+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
46+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
12+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
8+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
34+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
29+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
12+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
4+阅读 · 2018年11月7日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
12+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
8+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
34+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
29+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员