Numerical simulators are widely used to model physical phenomena and global sensitivity analysis (GSA) aims at studying the global impact of the input uncertainties on the simulator output. To perform GSA, statistical tools based on inputs/output dependence measures are commonly used. We focus here on the Hilbert-Schmidt independence criterion (HSIC). Sometimes, the probability distributions modeling the uncertainty of inputs may be themselves uncertain and it is important to quantify their impact on GSA results. We call it here the second-level global sensitivity analysis (GSA2). However, GSA2, when performed with a Monte Carlo double-loop, requires a large number of model evaluations, which is intractable with CPU time expensive simulators. To cope with this limitation, we propose a new statistical methodology based on a Monte Carlo single-loop with a limited calculation budget. First, we build a unique sample of inputs and simulator outputs, from a well-chosen probability distribution of inputs. From this sample, we perform GSA for various assumed probability distributions of inputs by using weighted HSIC measures estimators. Statistical properties of these weighted estimators are demonstrated. Subsequently, we define 2 nd-level HSICbased measures between the distributions of inputs and GSA results, which constitute GSA2 indices. The efficiency of our GSA2 methodology is illustrated on an analytical example, thereby comparing several technical options. Finally, an application to a test case simulating a severe accidental scenario on nuclear reactor is provided.
翻译:数字模拟器被广泛用于模拟物理现象和全球敏感度分析(GSA),目的是研究输入不确定性对模拟器产出的模拟性现象和全球敏感度分析(GSA)的全球影响。为了实施GSA,通常使用基于投入/产出依赖度的统计工具。我们在此侧重于Hilbert-Schmidt独立标准(HISIC),有时,模拟投入不确定性的概率分布本身可能不确定,因此必须量化其对GSA结果的影响。我们称它为二级全球敏感度分析(GSA2)。然而,在使用蒙特卡洛双圈进行时,GSA2需要大量的模型评估,而这种评估与CPU昂贵的时间模拟器是难以操作的。为了应对这一限制,我们提出了一个新的统计方法,以计算预算有限的蒙特卡洛单行单行标准为基础。首先,我们从投入的概率分布中建立独特的投入和模拟产出样本。我们从这一样本中,我们使用加权的HISIC计量器进行各种假设的投入的概率分布。我们通过加权的 HSISIC计量器来进行各种假设性GA,这些加权的计算方法的统计性测试性分析性分析结果。我们最后是SISA的数值分析方法的数值分析结果。