Developments in genome-wide association studies and the increasing availability of summary genetic association data have made the application of two-sample Mendelian Randomization (MR) with summary data increasingly popular. Conventional two-sample MR methods often employ the same sample for selecting relevant genetic variants and for constructing final causal estimates. Such a practice often leads to biased causal effect estimates due to the well known "winner's curse" phenomenon. To address this fundamental challenge, we first examine its consequence on causal effect estimation both theoretically and empirically. We then propose a novel framework that systematically breaks the winner's curse, leading to unbiased association effect estimates for the selected genetic variants. Building upon the proposed framework, we introduce a novel rerandomized inverse variance weighted estimator that is consistent when selection and parameter estimation are conducted on the same sample. Under appropriate conditions, we show that the proposed RIVW estimator for the causal effect converges to a normal distribution asymptotically and its variance can be well estimated. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical examples.
翻译:在全基因组协会的研究中,由于全基因组协会研究的发展以及遗传联系数据摘要的日益普及,采用双模Mendelian随机化(MR)和简要数据的方法越来越受欢迎。常规的双模MR方法往往使用相同的样本来选择相关的遗传变异物和进行最终因果关系估计。这种做法往往导致因众所周知的“赢家的诅咒”现象而产生偏颇的因果关系估计。为了应对这一基本挑战,我们首先从理论和经验角度研究其对因果关系估计的影响。然后我们提出一个新的框架,系统地打破赢家的诅咒,导致对选定的遗传变异物作出公正的联系影响估计。在拟议框架的基础上,我们引入了一个新的重新划定的逆差加权估计符,在选择和参数估计相同抽样时,这种抽样是一致的。在适当条件下,我们表明,对因果关系的拟议RIVW估计符标值与正常的随机分布及其差异是可以很好估计的。我们通过蒙特卡洛实验和两个经验实例来说明我们方法的有限缩略性表现。