Federated learning is an emerging distributed machine learning framework which jointly trains a global model via a large number of local devices with data privacy protections. Its performance suffers from the non-vanishing biases introduced by the local inconsistent optimal and the rugged client-drifts by the local over-fitting. In this paper, we propose a novel and practical method, FedSpeed, to alleviate the negative impacts posed by these problems. Concretely, FedSpeed applies the prox-correction term on the current local updates to efficiently reduce the biases introduced by the prox-term, a necessary regularizer to maintain the strong local consistency. Furthermore, FedSpeed merges the vanilla stochastic gradient with a perturbation computed from an extra gradient ascent step in the neighborhood, thereby alleviating the issue of local over-fitting. Our theoretical analysis indicates that the convergence rate is related to both the communication rounds $T$ and local intervals $K$ with a upper bound $\small \mathcal{O}(1/T)$ if setting a proper local interval. Moreover, we conduct extensive experiments on the real-world dataset to demonstrate the efficiency of our proposed FedSpeed, which performs significantly faster and achieves the state-of-the-art (SOTA) performance on the general FL experimental settings than several baselines including FedAvg, FedProx, FedCM, FedAdam, SCAFFOLD, FedDyn, FedADMM, etc.


翻译:联邦学习是一个新兴的分布式机器学习框架,它通过大量当地设备,用数据隐私保护保护,联合培训一个全球模型,通过大量当地设备,对一个全球模型进行数据隐私保护,其业绩受到当地不一致的最佳最佳和客户偏差的当地过度改造所带来的非失败偏见的影响。在本文中,我们提出了一个创新和实用的方法,即FedSpeed,以减轻这些问题造成的消极影响。具体地说,FedSpeed在当前的当地更新中应用了滚动修正术语,以有效减少由预产期引入的偏见,这是保持当地强有力一致性的必要常规化因素。此外,FedSpeed将香草肉色色梯度与从附近地区超梯度梯度的推算出的扰动性调整合并,从而缓解了当地过度适应问题。我们的理论分析表明,汇合率与通信轮合美元和当地间隔美元(如果设定适当的地方间隔,则以最高约束美元= mathcal(1/T) 来有效减少由预产期引入的偏差。此外,我们还在现实世界内进行了广泛的实验,包括联邦-联邦-联邦-联邦-州-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-州-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-州-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-州-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦-联邦

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员