Model-based reinforcement learning uses models to plan, where the predictions and policies of an agent can be improved by using more computation without additional data from the environment, thereby improving sample efficiency. However, learning accurate estimates of the model is hard. Subsequently, the natural question is whether we can get similar benefits as planning with model-free methods. Experience replay is an essential component of many model-free algorithms enabling sample-efficient learning and stability by providing a mechanism to store past experiences for further reuse in the gradient computational process. Prior works have established connections between models and experience replay by planning with the latter. This involves increasing the number of times a mini-batch is sampled and used for updates at each step (amount of replay per step). We attempt to exploit this connection by doing a systematic study on the effect of varying amounts of replay per step in a well-known model-free algorithm: Deep Q-Network (DQN) in the Mountain Car environment. We empirically show that increasing replay improves DQN's sample efficiency, reduces the variation in its performance, and makes it more robust to change in hyperparameters. Altogether, this takes a step toward a better algorithm for deployment.


翻译:以模型为基础的强化学习使用模型进行规划,使一个代理商的预测和政策可以在不增加环境数据的情况下使用更多的计算来改进,从而提高抽样效率。然而,学习对模型的准确估计是很困难的。随后,自然的问题是,我们能否获得与无模型方法规划相似的惠益。经验重播是许多无模型算法的重要组成部分,通过提供一个机制来储存过去的经验,以便在梯度计算过程中进一步再利用。以前的工程通过规划在模型和经验重现之间建立了联系。这需要对每个步骤(每步重放的量)进行更多的抽样,并用于更新。我们试图利用这一联系,对在众所周知的无模型算法中每步重播不同数量的影响进行系统研究:山区汽车环境中的深度 QNetwork (DQN) 。我们从经验上表明,越来越多的重播提高了DQN的样本效率,减少了其性能的变异性,并使它更有力地改变超像仪的配置。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员