We consider a natural generalization of Vertex Cover: the Subset Vertex Cover problem, which is to decide for a graph $G=(V,E)$, a subset $T \subseteq V$ and integer $k$, if $V$ has a subset $S$ of size at most $k$, such that $S$ contains at least one end-vertex of every edge incident to a vertex of $T$. A graph is $H$-free if it does not contain $H$ as an induced subgraph. We solve two open problems from the literature by proving that Subset Vertex Cover is NP-complete on subcubic (claw,diamond)-free planar graphs and on $2$-unipolar graphs, a subclass of $2P_3$-free weakly chordal graphs. Our results show for the first time that Subset Vertex Cover is computationally harder than Vertex Cover (under P $\neq$ NP). We also prove new polynomial time results. We first give a dichotomy on graphs where $G[T]$ is $H$-free. Namely, we show that Subset Vertex Cover is polynomial-time solvable on graphs $G$, for which $G[T]$ is $H$-free, if $H = sP_1 + tP_2$ and NP-complete otherwise. Moreover, we prove that Subset Vertex Cover is polynomial-time solvable for $(sP_1 + P_2 + P_3)$-free graphs and bounded mim-width graphs. By combining our new results with known results we obtain a partial complexity classification for Subset Vertex Cover on $H$-free graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员