Detecting accurate crack boundaries is important for condition monitoring, prognostics, and maintenance scheduling. In this work, we propose a Bayesian Boundary-Aware Convolutional Network (B-BACN) to tackle this problem, that emphasizes the importance of both uncertainty quantification and boundary refinement for producing accurate and trustworthy detections of defect boundaries. We formulate the inspection model using multi-task learning. The epistemic uncertainty is learned using Monte Carlo Dropout, and the model also learns to predict each samples aleatoric uncertainty. A boundary refinement loss is added to improve the determination of defect boundaries. Experimental results demonstrate the effectiveness of the proposed method in accurately identifying crack boundaries, reducing misclassification and enhancing model calibration.


翻译:检测准确的裂缝边界对于条件监测、预测和保养时间安排很重要。在这项工作中,我们提议建立一个巴伊西亚边界-资产革命网络(B-BACN)来解决这一问题,强调不确定性量化和边界完善对于准确和可信赖地探测缺陷边界的重要性。我们利用多任务学习来制定检查模式。通过蒙特卡洛漏网学习了认知性不确定性,模型还学会了预测每个样本的疏漏性不确定性。增加了边界完善损失,以更好地确定缺陷边界。实验结果表明拟议方法在准确确定裂缝边界、减少分类错误和加强模型校准方面的有效性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
40+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员