The logarithmic divergence is an extension of the Bregman divergence motivated by optimal transport and a generalized convex duality, and satisfies many remarkable properties. Using the geometry induced by the logarithmic divergence, we introduce a generalization of continuous time mirror descent that we term the conformal mirror descent. We derive its dynamics under a generalized mirror map, and show that it is a time change of a corresponding Hessian gradient flow. We also prove convergence results in continuous time. We apply the conformal mirror descent to online estimation of a generalized exponential family, and construct a family of gradient flows on the unit simplex via the Dirichlet optimal transport problem.
翻译:对数差异是布雷格曼差异的延伸,其动机是最佳交通和普遍二次曲线的双重性,它满足了许多显著的特性。我们使用对数差异引出的几何方法,对连续的时镜下沉进行概括化,将它称为相容镜下沉。我们根据一个通用的镜像地图来推算它的动态,并显示它是相应的赫塞斯梯度流的时间变化。我们也证明趋同会持续时间。我们用符合的镜下沉来对一个普遍指数式家庭进行在线估计,并通过德里赫特最佳交通问题,在单元简单化上建立一个梯度流的大家庭。