This paper presents a Bayesian framework to construct non-linear, parsimonious, shallow models for multitask regression. The proposed framework relies on the fact that Random Fourier Features (RFFs) enables the approximation of an RBF kernel by an extreme learning machine whose hidden layer is formed by RFFs. The main idea is to combine both dual views of a same model under a single Bayesian formulation that extends the Sparse Bayesian Extreme Learning Machines to multitask problems. From the kernel methods point of view, the proposed formulation facilitates the introduction of prior domain knowledge through the RBF kernel parameter. From the extreme learning machines perspective, the new formulation helps control overfitting and enables a parsimonious overall model (the models that serve each task share a same set of RFFs selected within the joint Bayesian optimisation). The experimental results show that combining advantages from kernel methods and extreme learning machines within the same framework can lead to significant improvements in the performance achieved by each of these two paradigms independently.
翻译:本文提出了一个贝叶斯框架, 用于构建非线性、 尖锐、 浅浅的多任务回归模型。 拟议的框架基于一个事实, 即随机傅里叶特性( RFFF) 使RBF 内核近似于由一台极端学习机器, 其隐藏层由 RFF 组成。 主要的想法是将同一模型的双重观点结合到一个单一的巴伊西亚配方中, 该配方将Sparse Bayesian 极端学习机器扩展到多任务问题。 从内核方法的观点看, 拟议的配方有利于通过 RBF 内核参数引入先前的域知识。 从极端学习机器的角度看, 新配方有助于控制并促成一个相似的整体模型( 每个任务使用的模型共享在Bayesian 联合优化中选择的一组相同的 RFFs ) 。 实验结果显示, 将同一框架内的内核内核方法和极端学习机器的优势结合起来, 可以导致这两种模式各自独立实现的绩效的重大改进 。