We extend results known for the randomized Gauss-Seidel and the Gauss-Southwell methods for the case of a Hermitian and positive definite matrix to certain classes of non-Hermitian matrices. We obtain convergence results for a whole range of parameters describing the probabilities in the randomized method or the greedy choice strategy in the Gauss-Southwell-type methods. We identify those choices which make our convergence bounds best possible. Our main tool is to use weighted l1-norms to measure the residuals. A major result is that the best convergence bounds that we obtain for the expected values in the randomized algorithm are as good as the best for the deterministic, but more costly algorithms of Gauss-Southwell type. Numerical experiments illustrate the convergence of the method and the bounds obtained. Comparisons with the randomized Kaczmarz method are also presented.
翻译:我们用随机的Gauss-Seidel和Gaus-Southwell方法将已知的结果推广到某些类别的非Hermitian矩阵,将已知的Hermitian和正肯定矩阵方法的结果推广到某些类别的非Hermitian矩阵。我们在描述随机方法的概率或Gaus-Southwell类型方法的贪婪选择策略的一系列参数上取得了趋同结果。我们找出了使我们最有可能实现趋同的选项。我们的主要工具是使用加权的 l1-Norms来测量剩余值。一个主要结果是,我们获得的随机算法中预期值的最佳趋同点与确定性一样好,但对于Gaus-Southwell类型的最昂贵的算法也是好的。数字实验说明了方法和所获界限的趋同。还介绍了与随机的Kaczmarz方法的比较。