The approximation of integral type functionals is studied for discrete observations of a continuous It\^o semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for $L^2$-Sobolev functions with fractional smoothness. An explicit $L^2$-lower bound shows that already lower order quadrature rules, such as the trapezoidal rule and the classical Riemann estimator, are rate optimal, but only the trapezoidal rule is efficient, achieving the minimal asymptotic variance.
翻译:集成型功能的近似值是用来对连续的It ⁇ o半成像进行离散观测的。根据Fourier域的新近似值,中央限值的理论被证明为$L $2$-Sobolev 函数,且具有分光性。一个明确的 $L2$-lower约束值显示,已经排序较低的二次曲线规则,如捕捉性甲醚规则和古典的Riemann测深器,是最佳比率,但只有捕捉性定律是有效的,达到最小的无药可治的差异。