The Hilbert spaces $H(\mathrm{curl})$ and $H(\mathrm{div})$ are needed for variational problems formulated in the context of the de Rham complex in order to guarantee well-posedness. Consequently, the construction of conforming subspaces is a crucial step in the formulation of viable numerical solutions. Alternatively to the standard definition of a finite element as per Ciarlet, given by the triplet of a domain, a polynomial space and degrees of freedom, this work aims to introduce a novel, simple method of directly constructing semi-continuous vectorial base functions on the reference element via polytopal templates and an underlying $H^1$-conforming polynomial subspace. The base functions are then mapped from the reference element to the element in the physical domain via consistent Piola transformations. The method is defined in such a way, that the underlying $H^1$-conforming subspace can be chosen independently, thus allowing for constructions of arbitrary polynomial order. The base functions arise by multiplication of the basis with template vectors defined for each polytope of the reference element. We prove a unisolvent construction of N\'ed\'elec elements of the first and second type, Brezzi-Douglas-Marini elements, and Raviart-Thomas elements. An application for the method is demonstrated with two examples in the relaxed micromorphic model
翻译:希尔伯特空格 $H( mathrm{ curl}) $H 和 $H( mathrm{ div}) $H( mathrm{ div}) 美元是用来解决在德拉姆综合体范围内拟订的变异性问题, 以保证稳妥。 因此, 构建符合子空间是制定可行的数字解决方案的关键步骤。 不同于Ciarlet对有限元素的标准定义, 由域的三进制、 多元空间和自由度来决定, 这项工作旨在引入一种新颖的简单方法, 直接在参考元素上直接构造半连续矢量基函数, 以多调模板模板模板模板模板模板为基础, 基础函数以每个模板格式定义的模板元素为基础。 测试了每个模板格式的二次矩阵 。