The integral fractional Laplacian of order $s \in (0,1)$ is a nonlocal operator. It is known that solutions to the Dirichlet problem involving such an operator exhibit an algebraic boundary singularity regardless of the domain regularity. This, in turn, deteriorates the global regularity of solutions and as a result the global convergence rate of the numerical solutions. For finite element discretizations, we derive local error estimates in the $H^s$-seminorm and show optimal convergence rates in the interior of the domain by only assuming meshes to be shape-regular. These estimates quantify the fact that the reduced approximation error is concentrated near the boundary of the domain. We illustrate our theoretical results with several numerical examples.
翻译:单数分解法( 0. 1美元 ) 是一个非本地操作员, 众所周知, 涉及此操作员的 Dirichlet 问题的解决方案显示出代数边界的单一性, 不论域的规律性如何。 这反过来又恶化了解决方案的全球规律性, 从而导致数字解决方案的全球趋同率。 对于有限元素的分解, 我们用$H $- seminorom 得出本地误差估计值, 并显示域内的最佳趋同率, 只是假设 meshes 是 常规的 。 这些估计可以量化缩短的近似误差集中在域边界附近的事实。 我们用多个数字例子来说明我们的理论结果 。