Traffic splitting is a required functionality in networks, for example for load balancing over paths or servers, or by the source's access restrictions. The capacities of the servers (or the number of users with particular access restrictions) determine the sizes of the parts into which traffic should be split. A recent approach implements traffic splitting within the ternary content addressable memory (TCAM), which is often available in switches. It is important to reduce the amount of memory allocated for this task since TCAMs are power consuming and are often also required for other tasks such as classification and routing. In the longest-prefix model (LPM), Draves et al. (INFOCOM 1999) find a minimal representation of a function, and Sadeh et al. (INFOCOM 2019) find a minimal representation of a partition. In certain situations, range-functions are of special interest, that is, all the addresses with the same target, or action, are consecutive. In this paper we show that minimizing the amount of TCAM entries to represent a partition comes at the cost of fragmentation, such that for some partitions some actions must have multiple ranges. Then, we also study the case where each target must have a single segment of addresses.


翻译:在网络中,交通分解是一项必要的功能,例如,对于平衡道路或服务器的负载,或对于源的准入限制,这种分流是网络中的一种必要功能。服务器的能力(或具有特定访问限制的用户数目)决定了通信应分割的部分的大小。最近的一种做法是将交通分解在长期内容可移动的内存内存(TCAM)内,这种内存通常在开关中可用。重要的是减少为这项任务分配的内存量,因为TCAM是耗电的,而且对于诸如分类和路线等其它任务也经常需要。在最长的前缀模型(LPM)、Draves等人(INFOCOM 1999)中,服务器的能力(或具有特定访问限制的用户数目)决定了一个功能的最小代表,而Sadeh等人(INFOCOM 2019)则决定了应分割部分的最小代表。在某些情况下,范围功能是特别有意义的,即同一目标或行动的所有地址都是连续的。在本文中,我们表明尽量减少TCAM条目中代表分割的成本是分解的,因此某些分区的行动必须具有多个的地址。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员