Federated Learning (FL) has received a significant amount of attention in the industry and research community due to its capability of keeping data on local devices. To aggregate the gradients of local models to train the global model, existing works require that the global model and the local models are the same. However, Internet of Things (IoT) devices are inherently diverse regarding computation speed and onboard memory. In this paper, we propose an FL framework targeting the heterogeneity of IoT devices. Specifically, local models are compressed from the global model, and the gradients of the compressed local models are used to update the global model. We conduct preliminary experiments to illustrate that our framework can facilitate the design of IoT-aware FL.


翻译:联邦学习联合会(FL)由于有能力保存当地设备的数据,在工业和研究界受到大量关注。为了汇总当地模型的梯度以培训全球模型,现有工作要求全球模型和当地模型相同。然而,物联网装置在计算速度和机内内记忆方面本质上是多种多样的。我们在本文件中提议了一个针对IOT设备的异质性的FL框架。具体地说,从全球模型中压缩了当地模型,并使用压缩当地模型的梯度来更新全球模型。我们进行了初步实验,以说明我们的框架可以促进IoT-aware FL的设计。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Relay-Assisted Cooperative Federated Learning
Arxiv
0+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员