题目: Threats to Federated Learning: A Survey
简介:
随着数据孤岛的出现和隐私意识,训练人工智能(AI)模型的传统集中式方法面临着严峻的挑战。在这种新现实下,联邦学习(FL)最近成为一种有效的解决方案。现有的FL协议设计已显示出存在漏洞,系统内部和外部系统的攻击者都可以利用这些漏洞来破坏数据隐私。因此,让FL系统设计人员了解未来FL算法设计对隐私保护的意义至关重要。当前,没有关于此主题的调查。在本文中,我们 弥合FL文学中的这一重要鸿沟。通过简要介绍FL的概念以及涵盖威胁模型和FL的两种主要攻击的独特分类法:1)中毒攻击 2)推理攻击,本文提供了对该重要主题的易于理解的概述。我们重点介绍了各种攻击所采用的关键技术以及基本假设,并讨论了未来研究方向,以实现FL中更强大的隐私保护。
目录: