Proactive robot assistance enables a robot to anticipate and provide for a user's needs without being explicitly asked. We formulate proactive assistance as the problem of the robot anticipating temporal patterns of object movements associated with everyday user routines, and proactively assisting the user by placing objects to adapt the environment to their needs. We introduce a generative graph neural network to learn a unified spatio-temporal predictive model of object dynamics from temporal sequences of object arrangements. We additionally contribute the Household Object Movements from Everyday Routines (HOMER) dataset, which tracks household objects associated with human activities of daily living across 50+ days for five simulated households. Our model outperforms the leading baseline in predicting object movement, correctly predicting locations for 11.1% more objects and wrongly predicting locations for 11.5% fewer objects used by the human user.
翻译:主动的机器人协助使机器人能够在没有明确询问的情况下预测和满足用户的需要。 我们作为机器人预测与日常用户例行活动有关的物体移动的时间模式的问题而提出主动的援助,并通过放置物体使其环境适应其需要来主动协助用户。 我们引入了基因图形神经网络,以学习从物体安排的时间序列中了解物体动态的统一时空预测模型。 我们还贡献了每天Routines(HOMER)的家用物体移动数据集,该数据集跟踪五个模拟住户与人类日常活动有关的住户物体在50天以上。 我们的模型在预测物体移动、正确预测11.1%以上物体的位置和错误预测减少人类用户使用的11.5%物体的位置方面超过了主要基线。