Error-bounded lossy compression is a critical technique for significantly reducing scientific data volumes. Compared to CPU-based compressors, GPU-based compressors exhibit substantially higher throughputs, fitting better for today's HPC applications. However, the critical limitations of existing GPU-based compressors are their low compression ratios and qualities, severely restricting their applicability. To overcome these, we introduce a new GPU-based error-bounded scientific lossy compressor named cuSZ-$i$, with the following contributions: (1) A novel GPU-optimized interpolation-based prediction method significantly improves the compression ratio and decompression data quality. (2) The Huffman encoding module in cuSZ-$i$ is optimized for better efficiency. (3) cuSZ-$i$ is the first to integrate the NVIDIA Bitcomp-lossless as an additional compression-ratio-enhancing module. Evaluations show that cuSZ-$i$ significantly outperforms other latest GPU-based lossy compressors in compression ratio under the same error bound (hence, the desired quality), showcasing a 476% advantage over the second-best. This leads to cuSZ-$i$'s optimized performance in several real-world use cases.
翻译:暂无翻译