The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN architecture remains to be kernelized, namely, the recurrent neural network (RNN). In this paper we introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs, including how different time steps are weighted by the RNTK to form the output under different initialization parameters and nonlinearity choices, and how inputs of different lengths are treated. The ability to compare inputs of different length is a property of RNTK that should greatly benefit practitioners. We demonstrate via a synthetic and 56 real-world data experiments that the RNTK offers significant performance gains over other kernels, including standard NTKs, across a wide array of data sets.


翻译:通过所谓的神经相近内核(NTK)方法对无限宽度限制的深神经网络(DNN)的研究,对学习、一般化的动态以及初始化的影响提供了新的洞察力。一个关键的DNN结构仍有待内核化,即经常性神经网络(RNN)。在本文中,我们介绍并研究经常性神经内核(RNTK),它提供了对过度平衡的RNNT行为的新洞察力,包括RNTK如何在不同的初始化参数和非线性选择下加权不同的时间步骤来形成输出,以及如何处理不同长度的投入。比较不同长度的投入的能力是RNTK的属性,应该极大地有利于从业人员。我们通过合成和56个真实世界数据实验,证明RNTK在其他各套数据库,包括标准的NTK在内,取得了重大绩效收益。

1
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
3+阅读 · 2018年10月25日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年1月16日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
3+阅读 · 2018年10月25日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年1月16日
Top
微信扫码咨询专知VIP会员