Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.
翻译:部分受变异经常性神经网络成功应用的启发,我们建议本文件采用新的变异经常性神经机器翻译模式(VRNMT),与变异NMT不同,VRNMT采用了一系列潜在的随机变量,以基因化方式而不是单一的潜在变量来模拟一个句子的翻译程序,具体地说,潜伏随机变量被包含在NMT解码器的隐藏状态中,含有变异自动编码器的元素。通过这种方式,这些变量是反复生成的,使其能够在不同时间步骤进一步捕捉出产出翻译之间的强大和复杂的依赖性。为了应对在纳入潜伏变量期间进行高效后继推断和大规模培训的挑战,我们建立了一个神经后导体近身器,并为它配备了一种重新校准技术,以估计变异性下约束。关于中文和英文翻译任务的实验表明,拟议的模型在常规和变异性NMT模型上都取得了显著的改进。