Autonomous driving applications use two types of sensor systems to identify vehicles - depth sensing LiDAR and radiance sensing cameras. We compare the performance (average precision) of a ResNet for vehicle detection in complex, daytime, driving scenes when the input is a depth map (D = d(x,y)), a radiance image (L = r(x,y)), or both [D,L]. (1) When the spatial sampling resolution of the depth map and radiance image are equal to typical camera resolutions, a ResNet detects vehicles at higher average precision from depth than radiance. (2) As the spatial sampling of the depth map declines to the range of current LiDAR devices, the ResNet average precision is higher for radiance than depth. (3) For a hybrid system that combines a depth map and radiance image, the average precision is higher than using depth or radiance alone. We established these observations in simulation and then confirmed them using realworld data. The advantage of combining depth and radiance can be explained by noting that the two type of information have complementary weaknesses. The radiance data are limited by dynamic range and motion blur. The LiDAR data have relatively low spatial resolution. The ResNet combines the two data sources effectively to improve overall vehicle detection.
翻译:自动驾驶应用使用两种传感器系统来识别车辆 -- -- 深度感测激光雷达和弧度感测摄像机;当输入为深度地图(D=d(x,y))、弧度图像(L=r(x,y))或两者同时[D,L]时,我们比较ResNet在复杂、白天和驾驶场对车辆探测的性能(平均精确度),当输入为深度地图(D=d(x,y))、弧度图像(L=r(x,y))或两者同时[D,L]时。 (1) 当深度地图的空间取样分辨率和弧度图像与典型的摄像分辨率相等时,ResNet从深度和弧度对车辆进行平均精确度比光度高的探测。 (2) 当深度地图的空间取样下降至目前的激光雷达装置的范围时,ResNet的平均精确度高于深度。 (3)对于将深度地图和弧度图像结合起来的混合系统来说,平均精确度高于光度,仅使用深度或弧度图像即可。我们在模拟中确立这些观测结果,然后用真实世界数据加以确认。可以解释将深度和光度结合起来的好处是两种信息具有互补性的弱点。光度和光度的优点数据,因为光度数据受到动态范围和运动数据受到限制,光度数据受限于感测距和运动的模糊。