In this paper, we propose a deep learning based numerical scheme for strongly coupled FBSDEs, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the mean squared error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDEs, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems, we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.
翻译:在本文中,我们提出了一个深层次的基于深层次的基于学习的、来自随机控制的FBSDE数字方案。这是对深层 BSDE 方法的修改,其中后方方程式的初始值不是一个自由参数,而新的损失函数是控制问题成本的加权总和,与终端状态中平均正方差相吻合的差别术语。我们用一个数字示例显示,经典的深深BSDE 方法直接延伸至 FBSDEs, 无法解决简单的线性赤道控制问题, 并激励新方法发挥作用。 在对时间连续和时间分离控制问题的确切控制方法的常规性和约束性假设下, 我们为我们的方法提供了错误分析。 我们从经验上表明,该方法会汇合三个不同的问题, 一个是未能直接扩展深层 BSDE 方法的问题。