The approximate solution of the Cauchy problem for second-order evolution equations is performed, first of all, using three-level time approximations. Such approximations are easily constructed and relatively uncomplicated to investigate when using uniform time grids. When solving applied problems numerically, we should focus on approximations with variable time steps. When using multilevel schemes on non-uniform grids, we should maintain accuracy by choosing appropriate approximations and ensuring the approximate solution's stability. In this paper, we construct unconditionally stable first- and second-order accuracy schemes on a non-uniform time grid for the approximate solution of the Cauchy problem for a second-order evolutionary equation. We use a special transformation of the original second-order differential-operator equation to a system of first-order equations. For the system of first-order equations, we apply standard two-level time approximations. We obtained stability estimates for the initial data and the right-hand side in finite-dimensional Hilbert space. Eliminating auxiliary variables leads to three-level schemes for the initial second-order evolution equation. Numerical experiments were performed for the test problem for a one-dimensional in space bi-parabolic equation. The accuracy and stability properties of the constructed schemes are demonstrated on non-uniform grids with randomly varying grid steps.
翻译:对二阶进化方程式的粗略问题,首先采用3级时间近似值,对二阶进化方程式进行大致的解决。这种近似值的构建比较容易,而且相对不复杂,在使用统一时间网格时,可以调查。在用数字解决应用的问题时,我们应该侧重于使用不同时间步骤的近似值。在使用非统一电网的多层次方案时,我们应该通过选择适当的近似值和确保近似解决办法的稳定性来保持准确性。在本文中,我们为二阶进化方程式的粗略解决卡奥西问题,在非统一时间网格上建立了无条件稳定的第一和第二级精确性计划。我们用二阶差异操作方方程式的原二阶差异方程式方程式方程式的特殊转换到一级方程式的系统。对于一阶方程式的系统,我们应用标准的2级时间近似值。我们获得了初始数据和有限维度的Hilbert空间右侧的稳定性估计值。消除辅助变量导致初始二阶进进方方方程式的3级计划。对一个测试问题进行了数值实验,在空间构造的单方格中以单方程式的单方程式的单方程式进行。</s>