For a zero-mean Gaussian random field with a parametric covariance function, we introduce a new notion of likelihood approximations (termed pseudo-likelihood functions), which complements the covariance tapering approach. Pseudo-likelihood functions are based on direct functional approximations of the presumed covariance function. We show that under accessible conditions on the presumed covariance function and covariance approximations, estimators based on pseudo-likelihood functions preserve consistency and asymptotic normality within an increasing-domain asymptotic framework.
翻译:对于具有参数共变函数的零平均值高斯随机字段,我们引入了一种新的可能性近似概念(术语假象功能),它补充了共变缩缩法。 假相似近似功能基于假定共变函数的直接功能近似值。 我们表明,在假设共变函数和共变近差的无障碍条件下,基于伪似函数的估测者在不断增加的域域内保持一致性和无损正常性。