Two of the fundamental no-go theorems of quantum information are the no-cloning theorem (that it is impossible to make copies of general quantum states) and the no-teleportation theorem (the prohibition on sending quantum states over classical channels without pre-shared entanglement). They are known to be equivalent, in the sense that a collection of quantum states is clonable if and only if it is teleportable. Our main result suggests that this is not the case when computational efficiency is considered. We give a collection of quantum states and oracles relative to which these states are efficiently clonable but not efficiently teleportable. Given that the opposite scenario is impossible (states that can be teleported can always trivially be cloned), this gives the most complete oracle separation possible between these two important no-go properties. In doing so, we introduce a related quantum no-go property, reconstructibility, which refers to the ability to construct a quantum state from a uniquely identifying classical description. We show the stronger result of a collection of quantum states that are efficiently clonable but not efficiently reconstructible. This novel no-go property only exists in relation to computational efficiency, as it is trivial for unbounded computation. It thus opens up the possibility of further computational no-go properties that have not yet been studied because they do not exist outside the computational context.
翻译:量子信息的基本不可移理论中有两个基本是不可移出理论( 无法复制普通量子状态) 和不可移出理论( 禁止通过古典渠道发送量子国家而不事先共享纠缠 ) 。 已知这两个理论是等效的, 也就是说, 量子国家的集合如果而且只有在具有远程可移动特性的情况下, 才能隐蔽。 我们的主要结果显示, 计算效率考虑时, 情况并非如此。 我们提供了量子状态和节点的集合, 相对于这些状态来说, 量子状态和节点是高效可移动的, 但不是高效的可移动的。 鉴于相反的情景是不可能的( 能够传输量子状态总是可能被轻度复制 ), 这使得这两种重要的不可移出属性之间最完整或最有可能的分离。 这样, 我们引入了一个相关的量子无偏重的属性, 也就是从一个独特识别的经典描述中构建量子状态的能力。 我们展示的是, 量子状态的收集结果更加强烈, 高效的可移动, 但不是高效的可移动的可移动的。 因此, 无法在外部的计算中打开了小数计算的可能性, 。 因此, 只能进行小化的计算。