Two of the fundamental no-go theorems of quantum information are the no-cloning theorem (that it is impossible to make copies of general quantum states) and the no-teleportation theorem (the prohibition on sending quantum states over classical channels without pre-shared entanglement). They are known to be equivalent, in the sense that a collection of quantum states is clonable if and only if it is teleportable. Our main result suggests that this is not the case when computational efficiency is considered. We give a collection of quantum states and oracles relative to which these states are efficiently clonable but not efficiently teleportable. Given that the opposite scenario is impossible (states that can be teleported can always trivially be cloned), this gives the most complete oracle separation possible between these two important no-go properties. In doing so, we introduce a related quantum no-go property, reconstructibility, which refers to the ability to construct a quantum state from a uniquely identifying classical description. We show the stronger result of a collection of quantum states that are efficiently clonable but not efficiently reconstructible. This novel no-go property only exists in relation to computational efficiency, as it is trivial for unbounded computation. It thus opens up the possibility of further computational no-go properties that have not yet been studied because they do not exist outside the computational context.


翻译:量子信息的基本不可移理论中有两个基本是不可移出理论( 无法复制普通量子状态) 和不可移出理论( 禁止通过古典渠道发送量子国家而不事先共享纠缠 ) 。 已知这两个理论是等效的, 也就是说, 量子国家的集合如果而且只有在具有远程可移动特性的情况下, 才能隐蔽。 我们的主要结果显示, 计算效率考虑时, 情况并非如此。 我们提供了量子状态和节点的集合, 相对于这些状态来说, 量子状态和节点是高效可移动的, 但不是高效的可移动的。 鉴于相反的情景是不可能的( 能够传输量子状态总是可能被轻度复制 ), 这使得这两种重要的不可移出属性之间最完整或最有可能的分离。 这样, 我们引入了一个相关的量子无偏重的属性, 也就是从一个独特识别的经典描述中构建量子状态的能力。 我们展示的是, 量子状态的收集结果更加强烈, 高效的可移动, 但不是高效的可移动的可移动的。 因此, 无法在外部的计算中打开了小数计算的可能性, 。 因此, 只能进行小化的计算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月26日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
0+阅读 · 2023年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员