We report lowest-order series expansions for primary matrix functions of quantum states based on a perturbation theory for functions of linear operators. Our theory enables efficient computation of functions of perturbed quantum states that assume only knowledge of the eigenspectrum of the zeroth order state and the density matrix elements of a zero-trace, Hermitian perturbation operator, not requiring analysis of the full state or the perturbation term. We develop theories for two classes of quantum state perturbations, perturbations that preserve the vector support of the original state and perturbations that extend the support beyond the support of the original state. We highlight relevant features of the two situations, in particular the fact that functions and measures of perturbed quantum states with preserved support can be elegantly and efficiently represented using Fr\'echet derivatives. We apply our perturbation theories to find simple expressions for four of the most important quantities in quantum information theory that are commonly computed from density matrices: the Von Neumann entropy, the quantum relative entropy, the quantum Chernoff bound, and the quantum fidelity.
翻译:我们报告了基于线性算符的函数摄动理论的主要矩阵函数的最低级别系列展开式。我们的理论能够有效地计算扰动量子状态的函数,只需知道零阶状态的特征谱和零迹、厄米扰动算符的密度矩阵元素,而不需要分析完整的状态或扰动项。我们针对两类量子状态扰动发展理论,一类是保留原始状态的矢量支持的扰动,另一类是扩展支持超出原始状态的扰动。我们强调两种情况的相关特征,特别是具有保留支持的扰动量子状态的函数和度量可以使用Fr\'echet导数优雅且有效地表示。我们将我们的扰动理论应用于四个最重要的量子信息理论中通常通过密度矩阵计算的量子相对熵、量子Chernoff界、量子保真度和冯诺依曼熵的简单表达式的发现。