New retrieval tasks have always been emerging, thus urging the development of new retrieval models. However, instantiating a retrieval model for each new retrieval task is resource-intensive and time-consuming, especially for a retrieval model that employs a large-scale pre-trained language model. To address this issue, we shift to a novel retrieval paradigm called modular retrieval, which aims to solve new retrieval tasks by instead composing multiple existing retrieval modules. Built upon the paradigm, we propose a retrieval model with modular prompt tuning named REMOP. It constructs retrieval modules subject to task attributes with deep prompt tuning, and yields retrieval models subject to tasks with module composition. We validate that, REMOP inherently with modularity not only has appealing generalizability and interpretability in preliminary explorations, but also achieves comparable performance to state-of-the-art retrieval models on a zero-shot retrieval benchmark.\footnote{Our code is available at \url{https://github.com/FreedomIntelligence/REMOP}}
翻译:摘要:随着新的检索任务不断出现,不断促进了新的检索模型的发展。然而为每个新的检索任务实例化检索模型是耗费资源和耗时的,特别是对于一个采用大规模预训练语言模型的检索模型来说。为了解决这个问题,我们转向了一种称为模块化检索的新检索范例,其旨在通过组合多个已有的检索模块,来解决新的检索任务。基于这种范例,我们提出了一种名为REMOP的带有模块化提示调整的检索模型。它使用深度提示调整构建与任务属性相关的检索模块,并使用模块组合生成与任务相关的检索模型。我们验证了REMOP固有的模块化不仅在初步的探索中具有吸引人的泛化能力和可解释性,而且在一个零样例检索基准上实现了与最先进检索模型相当的性能。【我们的代码可在以下链接中找到:\url{https://github.com/FreedomIntelligence/REMOP}】