Link prediction with knowledge graph embedding (KGE) is a popular method for knowledge graph completion. Furthermore, training KGEs on non-English knowledge graph promote knowledge extraction and knowledge graph reasoning in the context of these languages. However, many challenges in non-English KGEs pose to learning a low-dimensional representation of a knowledge graph's entities and relations. This paper proposes "Farspredict" a Persian knowledge graph based on Farsbase (the most comprehensive knowledge graph in Persian). It also explains how the knowledge graph structure affects link prediction accuracy in KGE. To evaluate Farspredict, we implemented the popular models of KGE on it and compared the results with Freebase. Given the analysis results, some optimizations on the knowledge graph are carried out to improve its functionality in the KGE. As a result, a new Persian knowledge graph is achieved. Implementation results in the KGE models on Farspredict outperforming Freebases in many cases. At last, we discuss what improvements could be effective in enhancing the quality of Farspredict and how much it improves.
翻译:知识图谱嵌入(KGE)进行链接预测是完成知识图谱的流行方法。在非英文知识图上训练KGE还促进了知识提取和知识图谱推理,特别是在这些语言的情况下。 但是,非英语的KGE中存在许多挑战,这些挑战会导致难以学习知识图谱实体和关系的低维表示。 本文提出了“Farspredict”,这是一种基于波斯语知识图谱Farsbase(波斯语中最全面的知识图谱)的一种波斯语知识图谱。本文还解释了知识图谱结构如何影响KGE中的链接预测准确性。 为了评估Farspredict,我们在其上实施了KGE的流行模型,并将结果与Freebase进行了比较。 给出分析结果,对知识图谱进行了一些优化,以提高其在KGE中的功能。因此,得到了一个新的波斯语知识图谱。在Farspredict上实现的KGE模型的实现结果在许多情况下均优于Freebases。 最后,我们讨论了哪些改进措施可以有效提高Farspredict的质量以及它的改进程度。