The theory of weak optimal transport (WOT), introduced by [Gozlan et al., 2017], generalizes the classic Monge-Kantorovich framework by allowing the transport cost between one point and the points it is matched with to be nonlinear. In the so-called barycentric version of WOT, the cost for transporting a point $x$ only depends on $x$ and on the barycenter of the points it is matched with. This aggregation property of WOT is appealing in machine learning, economics and finance. Yet algorithms to compute WOT have only been developed for the special case of quadratic barycentric WOT, or depend on neural networks with no guarantee on the computed value and matching. The main difficulty lies in the transportation constraints which are costly to project onto. In this paper, we propose to use mirror descent algorithms to solve the primal and dual versions of the WOT problem. We also apply our algorithms to the variant of WOT introduced by [Chon\'e et al., 2022] where mass is distributed from one space to another through unnormalized kernels (WOTUK). We empirically compare the solutions of WOT and WOTUK with classical OT. We illustrate our numerical methods to the economic framework of [Chon\'e and Kramarz, 2021], namely the matching between workers and firms on labor markets.
翻译:由[Gozlan 等人, 2017年] 引入的薄弱最佳运输理论(WOT), 概括了经典的Monge-Kantorovich框架, 允许一个点与点之间的运输成本与非线性点匹配。 在所谓的WOT中枢版中, 运输一个点的成本仅取决于美元x美元, 并且取决于它与点的中枢。 WOT的总产值在机器学习、 经济和金融中具有吸引力。 然而, 计算WOT的算法仅针对象形巴中心WOT的特殊案例, 或依赖神经网络, 而不能保证计算价值和匹配。 主要的困难在于运输限制, 投射成本昂贵。 在本文中, 我们提议使用镜像的血缘算法来解决WOT问题的基本和双重版本。 我们还将我们的算法应用于[Chon\'e, et al. 。 然而, 计算WOOT2, 的计算方法从一个空间到另一个空间, 也就是SMOKI 和SUB 的劳动力市场的对比。