We provide an analytical characterization of the model flexibility of the synthetic control method (SCM) in the familiar form of degrees of freedom. We obtain estimable information criteria. These may be used to circumvent cross-validation when selecting either the weighting matrix in the SCM with covariates, or the tuning parameter in model averaging or penalized variants of SCM. We assess the impact of car license rationing in Tianjin and make a novel use of SCM; while a natural match is available, it and other donors are noisy, inviting the use of SCM to average over approximately matching donors. The very large number of candidate donors calls for model averaging or penalized variants of SCM and, with short pre-treatment series, model selection per information criteria outperforms that per cross-validation.
翻译:我们以熟悉的自由程度对合成控制方法(合成控制方法)的灵活度模型进行分析性定性分析,我们获得可估量的信息标准,这些标准可用于在选择合成控制方法(合成控制方法)的加权矩阵时避免交叉验证,或者在选择合成控制方法(合成控制方法)平均或受处罚的变体模型的调整参数时避免交叉验证。我们评估天津汽车许可证配给的影响,并重新使用合成控制方法(合成控制方法);虽然存在自然匹配,但它和其他捐助方都吵闹不休,要求使用合成控制方法的平均值高于大约相匹配的捐助方。大量候选捐助方呼吁采用标准组合平均或受处罚的变体模型,并使用短的处理前序列,按信息标准选择的模式优于交叉校准。