Insider information and model uncertainty are two unavoidable problems for the portfolio selection theory in reality. This paper studies the robust optimal portfolio strategy for an investor who owns general insider information under model uncertainty. On the aspect of the mathematical theory, we improve some properties of the forward integral and use Malliavin calculus to derive the anticipating It\^{o} formula . Then we use forward integrals to formulate the insider-trading problem with model uncertainty. We give the half characterization of the robust optimal portfolio and obtain the semimartingale decomposition of the driving noise $W$ with respect to the insider information filtration, which turns the problem turns to the nonanticipative stochastic differential game problem. We give the total characterization by the stochastic maximum principle. When considering two typical situations where the insider is `small' and `large', we give the corresponding BSDEs to characterize the robust optimal portfolio strategy, and derive the closed form of the portfolio and the value function in the case of the small insider by the Donsker $\delta$ functional. We present the simulation result and give the economic analysis of optimal strategies under different situations.
翻译:内部信息和模型不确定性是现实中组合选择理论的两个不可避免的问题。本文件研究一个投资者在模型不确定性下拥有一般内部信息的稳健最佳投资组合战略。 在数学理论的方面,我们改进了前方整体积分的某些特性,并使用Malliavin积分法来得出预期的It ⁇ o}公式。然后我们使用前方积分法来根据模型不确定性来形成内部交易问题。我们给稳健的最佳投资组合作一半的定性,并获得内端信息过滤中驱动噪音的半边形分解法,将问题转向非对应性随机差异游戏问题。我们用随机最大原则来给出总体特征。在考虑内端“小”和“大”两种典型情况时,我们给相应的BSDES来描述稳健最佳组合战略的特点,并得出Donsker $\delta$的封闭组合形式和内端小内端价值功能的半边状分法,我们根据不同功能战略进行最佳模拟并作出经济结果分析。