项目名称: 几类可压流体方程组的相关问题的数学分析与数值方法
项目编号: No.11271051
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 贾月玲
作者单位: 北京应用物理与计算数学研究所
项目金额: 60万元
中文摘要: 拟研究源于应用科学领域及实际工程中的几类(耦合)非线性偏微分方程(组)。重点研究:源于核反应物理和爆轰等领域中耦合了电子、离子和光子三种能量的二维三温辐射流体力学方程组;源于石油工业,环境科学,燃烧理论等领域的(不)带松弛项的可压缩非守恒两相流模型以及源于量子物理、水波、光学和流体力学中的高维带导数非线性项的几个色散波方程。研究其相关的定解问题的适定性或低正则解,以及相关的数值模拟方法。所研究的问题具有很强实际应用背景,是国际非线性偏微分方程研究领域中本质的和十分重要的前沿课题,也是当前实际工程中迫切需要解决的关键技术问题。
中文关键词: 流体力学方程组;色散波方程组;理论分析;数值计算方法;
英文摘要: This program is devoted to study several (coupled) nonlinear partial differential equations in the applied science fields and practical engineering. The emphasis is to study three kinds of equations: the 2 dimensional 3 temperature Radiation hydrodynamic model couples three energy of electron, ion and photon in nuclear reaction physics and detonation fields; the non-conservative compressible two-phase model with or without relaxation terms derives from oil industry, environment science, burning theory and so on; the high dimensional dispersive equation with derivative nonlinear terms derives from quantum physics, water wave, optics and hydrodynamics. It is devoted to study the wellposedness or low regularity solution of the related problems, together with their numerical methods. The problems are provided with strong practical applied background, they are essential and the most important open problems, which exigently need to be solved in the practical engineering.
英文关键词: Hydrodynamic Equations;the dispersive equations;theory analysis;numerical computational method;