Transportation of measure provides a versatile approach for modeling complex probability distributions, with applications in density estimation, Bayesian inference, generative modeling, and beyond. Monotone triangular transport maps$\unicode{x2014}$approximations of the Knothe$\unicode{x2013}$Rosenblatt (KR) rearrangement$\unicode{x2014}$are a canonical choice for these tasks. Yet the representation and parameterization of such maps have a significant impact on their generality and expressiveness, and on properties of the optimization problem that arises in learning a map from data (e.g., via maximum likelihood estimation). We present a general framework for representing monotone triangular maps via invertible transformations of smooth functions. We establish conditions on the transformation such that the associated infinite-dimensional minimization problem has no spurious local minima, i.e., all local minima are global minima; and we show for target distributions satisfying certain tail conditions that the unique global minimizer corresponds to the KR map. Given a sample from the target, we then propose an adaptive algorithm that estimates a sparse semi-parametric approximation of the underlying KR map. We demonstrate how this framework can be applied to joint and conditional density estimation, likelihood-free inference, and structure learning of directed graphical models, with stable generalization performance across a range of sample sizes.
翻译:测量的运输为模拟复杂概率分布提供了一种灵活的方法, 其应用在密度估计、 贝耶斯测算、 基因模型和范围之外。 单调三角运输映射$\ unicode{x2013}$ Rosenblatt (KR) 重新排列$\ unicode{x2014}$ 是这些任务的一个典型选择。 然而, 这些地图的表示和参数化对其一般性和表达性以及从数据中学习地图( 例如, 通过最大可能性估测) 时产生的优化问题的性质有重大影响。 我们提出了一个通过平滑功能的不可逆转换代表单调三角地图的一般框架。 我们为这种转变设定了条件, 即相关的无限维最小化问题没有刺激性的本地迷你, 即所有本地微型都是全球迷你模型; 我们为目标分布展示了某些符合独特的全球最小化模型与 KR 映射地图相匹配的尾部条件。 根据一个来自目标的样本( 例如, 通过最大的可能性估计 ), 我们随后提出一个单一度三角三角图的模型估算, 我们用一个稳定的模型来展示一个稳定的模型的模型 。