In this paper, we propose five prediction intervals for the beta autoregressive moving average model. This model is suitable for modeling and forecasting variables that assume values in the interval $(0,1)$. Two of the proposed prediction intervals are based on approximations considering the normal distribution and the quantile function of the beta distribution. We also consider bootstrap-based prediction intervals, namely: (i) bootstrap prediction errors (BPE) interval; (ii) bias-corrected and acceleration (BCa) prediction interval; and (iii) percentile prediction interval based on the quantiles of the bootstrap-predicted values for two different bootstrapping schemes. The proposed prediction intervals were evaluated according to Monte Carlo simulations. The BCa prediction interval offered the best performance among the evaluated intervals, showing lower coverage rate distortion and small average length. We applied our methodology for predicting the water level of the Cantareira water supply system in S\~ao Paulo, Brazil.
翻译:在本文中,我们建议了乙型自动递减平均模型的五个预测间隔,该模型适合于模型和预测假定值在(0,1美元)间隔期间的变量。提议的两个预测间隔以考虑到乙型分布的正常分布和四分位函数的近似值为基础。我们还考虑了以靴子为基础的预测间隔,即:(一) 靴子陷阱预测误差(BPE)间隔;(二) 偏差修正和加速(BCa)预测间隔;以及(三) 以靴子陷阱预设值的量化为基础,对两种不同的靴子探险计划进行百分位预测间隔。拟议的预测间隔是根据蒙特卡洛模拟评估的。BCA预测间隔期提供了评估间隔期间的最佳性能,显示了较低的覆盖率扭曲和较短的平均长度。我们在巴西圣保罗州应用了预测Cantareira供水系统的水位的方法。