We investigate $L_2$ boosting in the context of kernel regression. Kernel smoothers, in general, lack appealing traits like symmetry and positive definiteness, which are critical not only for understanding theoretical aspects but also for achieving good practical performance. We consider a projection-based smoother (Huang and Chen, 2008) that is symmetric, positive definite, and shrinking. Theoretical results based on the orthonormal decomposition of the smoother reveal additional insights into the boosting algorithm. In our asymptotic framework, we may replace the full-rank smoother with a low-rank approximation. We demonstrate that the smoother's low-rank ($d(n)$) is bounded above by $O(h^{-1})$, where $h$ is the bandwidth. Our numerical findings show that, in terms of prediction accuracy, low-rank smoothers may outperform full-rank smoothers. Furthermore, we show that the boosting estimator with low-rank smoother achieves the optimal convergence rate. Finally, to improve the performance of the boosting algorithm in the presence of outliers, we propose a novel robustified boosting algorithm which can be used with any smoother discussed in the study. We investigate the numerical performance of the proposed approaches using simulations and a real-world case.
翻译:在内核回归的背景下,我们调查了$L_2美元 。 内核滑动器一般缺乏对称性和正确定性等有吸引力的特征,这些特征不仅对于理解理论方面,而且对于实现良好的实际业绩至关重要。 我们考虑的是基于投影的平滑器(Huang和Chen,2008年),这是对称的,积极的,并且正在缩小。 以光滑的异常分解为基础的理论结果揭示了对振动算法的更多洞察力。 在我们的无防线框架内,我们可以用低级近似来取代全层平滑器。 我们证明平滑器的低位(n)值不仅对理解理论方面,而且对于实现良好的实际业绩至关重要。 我们的计算结果显示,从预测准确性看,低级平滑器可能超过全级平滑。 此外, 我们显示,低级平滑的估器的振动器可以达到最佳的趋同率。 最后, 我们证明,平滑器的平滑法的性演算法的性能改进, 与平滑式的平滑式的模拟研究中,我们提议任何平滑的平滑式的平板的平滑法可以进行新的研究。