Video prediction is an important yet challenging problem; burdened with the tasks of generating future frames and learning environment dynamics. Recently, autoregressive latent video models have proved to be a powerful video prediction tool, by separating the video prediction into two sub-problems: pre-training an image generator model, followed by learning an autoregressive prediction model in the latent space of the image generator. However, successfully generating high-fidelity and high-resolution videos has yet to be seen. In this work, we investigate how to train an autoregressive latent video prediction model capable of predicting high-fidelity future frames with minimal modification to existing models, and produce high-resolution (256x256) videos. Specifically, we scale up prior models by employing a high-fidelity image generator (VQ-GAN) with a causal transformer model, and introduce additional techniques of top-k sampling and data augmentation to further improve video prediction quality. Despite the simplicity, the proposed method achieves competitive performance to state-of-the-art approaches on standard video prediction benchmarks with fewer parameters, and enables high-resolution video prediction on complex and large-scale datasets. Videos are available at https://sites.google.com/view/harp-videos/home.
翻译:视频预测是一个重要但富有挑战性的问题;承担着生成未来框架和学习环境动态的任务。最近,自动递减潜潜潜视频模型被证明是一个强大的视频预测工具,将视频预测分为两个子问题:先训练图像生成模型,然后在图像生成器的潜空学习自动递减预测模型。然而,尚未看到成功生成高不忠和高分辨率视频。在这项工作中,我们研究如何培训一个自动递减潜潜在视频预测模型,该模型能够对现有模型进行最低限度的修改,预测高纤维未来框架,并制作高分辨率(256x256)视频。具体地说,我们通过使用高纤维生成模型(VQ-GAN)和因果变异模型扩大先前的模型,并采用顶级取样和数据增强的附加技术,以进一步提高视频预测质量。尽管简单,但拟议方法在标准视频预测基准参数较小的情况下,在州级视频预测方法上取得了竞争性的性能,并且能够使高分辨率视频预测在复杂和大型数据中进行(MAG/ShoVs)。