We provide time lower bounds for sequential and parallel algorithms deciding bisimulation on labeled transition systems that use partition refinement. For sequential algorithms this is $\Omega((m \mkern1mu {+} \mkern1mu n ) \mkern-1mu \log \mkern-1mu n)$ and for parallel algorithms this is $\Omega(n)$, where $n$ is the number of states and $m$ is the number of transitions. The lowerbounds are obtained by analysing families of deterministic transition systems, ultimately with two actions in the sequential case, and one action for parallel algorithms. For deterministic transition systems with one action, bisimilarity can be decided sequentially with fundamentally different techniques than partition refinement. In particular, Paige, Tarjan, and Bonic give a linear algorithm for this specific situation. We show, exploiting the concept of an oracle, that this approach is not of help to develop a faster generic algorithm for deciding bisimilarity. For parallel algorithms there is a similar situation where these techniques may be applied, too.
翻译:我们为在使用分区精细化的标签过渡系统上决定振动的顺序和平行算法提供了较低的时间界限。 对于顺序算法来说,这是$\Omega(m\mkern1mu \\\\ mkern1mu n)\ mkern-1mu\log\mkern-1mu n)$,对于平行算法,这是$\Omega(n)$, 其中美元是州数, 美元是过渡次数。 较低的算法是通过分析确定性过渡系统的家庭获得的, 最终在相继情况下有两种动作, 以及平行算法的动作。 对于具有一种动作的确定性过渡系统, 两样性可以按根本不同的技术顺序决定。 特别是, 佩奇, Tarjan 和 Bonic 提供了一种特定情况的线性算法。 我们利用一个符子的概念来显示, 这种方法无助于发展一种更快的通用算法来决定两样性。 对于平行算法来说, 类似的算法也是相似的。